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Abstract

Objective. Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD) which is an
irreversible progressive neurodegenerative disease and its early diagnosis and intervention are of great
significance. Recently, many deep learning methods have demonstrated the advantages of multi-
modal neuroimages in MCl identification task. However, previous studies frequently simply
concatenate patch-level features for prediction without modeling the dependencies amonglocal
features. Also, many methods only focus on modality-sharable information or modality-specific
features and ignore their incorporation. This work aims to address above-mentioned issues and
construct a model for accurate MCl identification. Approach. In this paper, we propose a multi-level
fusion network for MCI identification using multi-modal neuroimages, which consists of local
representation learning and dependency-aware global representation learning stages. Specifically, for
each patient, we first extract multi-pair of patches from multiple same position in multi-modal
neuroimages. After that, in the local representation learning stage, multiple dual-channel sub-
networks, each of which consists of two modality-specific feature extraction branches and three sine-
cosine fusion modules, are constructed to learn local features that preserve modality-sharable and
modality specific representations simultaneously. In the dependency-aware global representation
learning stage, we further capture long-range dependencies among local representations and integrate
them into global ones for MClI identification. Main results. Experiments on ADNI-1/ADNI-2 datasets
demonstrate the superior performance of the proposed method in MCI identification tasks (Accuracy:
0.802, sensitivity: 0.821, specificity: 0.767 in MCI diagnosis task; accuracy: 0.849, sensitivity: 0.841,
specificity: 0.856 in MCI conversion task) when compared with state-of-the-art methods. The
proposed classification model has demonstrated a promising potential to predict MCI conversion and
identify the disease-related regions in the brain. Significance. We propose a multi-level fusion network
for MCl identification using multi-modal neuroimage. The results on ADNI datasets have
demonstrated its feasibility and superiority.

1. Introduction

Mild cognitive impairment (MCI) is a condition in which an individual has mild but measurable changes in
thinking abilities that do not affect daily activities (Association et al 2016). Partial old people with MCI
(especially those with progressive MCI) are likely to suffer from Alzheimer’s disease (AD) in the future, which is
anirreversible disease (Kantarci et al 2009, Mitchell and Shiri-Feshki 2009). Timely medical intervention can
help delay the deterioration process by discovering significant biomarkers and structural changes in the early

© 2023 Institute of Physics and Engineering in Medicine
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stage. In clinical practices, neuroimages, such as magnetic resonance imaging (MRI) and positron emission
tomography (PET), atrophy status and brain function information (Hosseini-Asl et al 2016, Singh et al 2017,
Zhang et al 2019a). Therefore, various neuroimage-based computer-aided diagnosis (CAD) methods have been
developed for MClI status identification (Leandrou et al 2018). In general, exiting MCI identification approaches
can be roughly classified into two categories, including traditional machine learning methods (Escudero et al
2012, Chengetal 2015, Liuetal 2015, Liu etal 2016, Nie etal 2016, Tong et al 2016, Liu et al 2017a, Zhou et al
2019, Ansart et al 2021) and deep learning methods (Cui and Liu 2018, Liu et al 2018a, Li and Fan 2019, Spasov
etal2019, Zhang et al 2019b, Fang et al 2020, Lian ef al 2020, Zhang and Shi 2020). The traditional mhachine
learning methods refer to three main steps: (1) identifying the regions of interest (ROIs), (2) extracting features
from ROIs, and (3) constructing the classifier. Recently, deep learning methods have shown promising potential
in the field of brain disease identification. Different from traditional machine learning methods, they can not
onlylearn features in a data-driven manner but also jointly conduct discriminative feature learning and classifier
modeling (Cuiand Liu 2018, Li and Fan 2019, Lian et al 2020). With the development of new neuroimaging
technologies, many studies have demonstrated that multi-modal neuroimages can advance brain disease
diagnosis, especially in cognitive impairment evaluation. For example, Zhang et al (2019b) proposed a deep
learning network to combine multi-modal neuroimage in which two convolutional neural networks (CNN’s) in
conjunction with clinical neuropsychological information are conducted to distinguish AD from NC. Liu et al
(2018a) constructed cascaded CNNs to learn multi-level and multi-modal features from MRI and PET images
for AD classification. Fang et al (2020) employed three CNNs to generate a probabilistic score for the input slices
of each modality and fused the probabilistic scores to train an ensemble classifier for prediction. Zhang and Shi
(2020) proposed a deep multi-modal fusion model based on MRI and PET images for the early diagnosis of MCI
conversion by learning the synergy between the multi-modal data. Researchers developed a graph-based deep
neural network (Zhang et al 2021) to simultaneously model brain structure and function information using
structural MRI and functional MRI to maximize the capability of differentiating MCI patients from elderly
normal controls (NC). Although these methods significantly improve diagnostic performance, they merely
focus on either modality-sharable information or modality-specific representations, or the simple
concatenation of both, thereby the complementary information within multi-modal data is still not fully
exploited.

However, deep learning methods for MCI diagnosis are usually hindered by the overfitting issue due to the
limited sample size, to tackle which, several studies have proposed to extract local patches from the whole
volume as a data augmentation strategy. For example, Liu et al (2019) proposed a weakly supervised densely
connected neural network (wiseDNN) based on multi-scale patches centered on disease-related anatomical
landmarks for predicting multiple types of clinical measures. Lian et al (2018) constructed a hierarchical fully
convolutional network to automatically identify discriminative locations in MRI images, on which multi-scale
representations are generated to construct the hierarchical classifier for MCI conversion prediction. Liu et al
(2018b) proposed a deep multi-task multi-channel learning framework for joint brain disease classification and
clinical score regression using both landmark-around patches and demographic information of subjects.
Despite the fact that those patch-based methods have shown impressive accuracy, they simply concatenate
patch-level features for diagnosis without modeling the dependencies among local features and ignore the
correlation of brain regions, which may result in sub-optimal performance. In this paper, we propose a multi-
level fusion network (MFN) for MCl identification using multi-modal neuroimages, which consists of local
representation learning and dependency-aware global representation learning stages. The framework of our
proposed networks is illustrated in figure 1. Specifically, for each patient, we extract multi-pair of patches from
multiple same position in the multi-modal neuroimages. Then, in the local representation learning stage, we
construct multiple dual-channel sub-networks (DCSs), each of which consists of two branches of modality-
specific feature extraction (MFE) units and three sine-cosine fusion (SCF) modules, to learn local
representations from multi pair of patches. Three MFE units in each branch are designed to extract multi-level
modality-specific features while three SCF modules are devised to simultaneously learn modality-specific and
modality-sharable representations along spatial and channel directions from multi-modal features of two
branches. In the dependency-aware global representation learning stage, we additionally employ the long-range
dependency capture (LRDC) module to model the correlations amonglocal representations and integrate them
into global ones for MCl identification. The main contributions of this paper are summarized as follows:

+ We propose a multi-level fusion network for MCI identification with multi-modal neuroimages, and
extensive experiments on public datasets demonstrate its superior abilities of generalization and biomarker
localization.
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Figure 1. The framework of our proposed network for dementia identification. The proposed network consists of the local
representation learning stage and dependency-aware global representation learning stage. The former stage contains multiple DCSs,
each of which consists of two branches of three MFE units and three SCF modules, denoted as { M;}_,, {P,}}_,,and {S;}_,,
respectively. Specifically, the ith MFE units, i.e. M; and P;, are designed to extract ith level local features from multi-modal patches.
And the ith SCF module, i.e. S;, is applied to simultaneously learn modality-sharable and modality-specific representations from ith
level multi-modal features along the channel and spatial directions. Notably, multiple DCSs share the same network parameters
across different patch locations. In the latter stage, we employ the LRDC module to model long-range dependencies amonglocal
representations. After integrating these local representation into the global ones, we feed them into dense layers for MCI
identification.

Table 1. Demographic information of the subjects included in the studied datasets (i.e. ADNI-1

and ADNI-2).

Dataset Category Female/Male Age Education MMSE

ADNI-1 NC 38/60 75.7 + 4.7 159 + 3.1 289+ 1.1
sMCI 35/86 749+ 7.5 158 £ 2.9 274+ 1.6
pMCI 31/48 75.0 £ 6.7 15.8 + 2.7 26.8 + 1.7

ADNI-2 NC 62/28 719+ 5.8 16.2 4+ 2.5 29.2 4+ 1.1
sMCI 44/60 70.2 + 6.3 16.6 £ 2.6 283+ 1.7
pMCI 29/40 731+ 7.0 16.5 &+ 2.6 273+ 1.8

+ Multiple DCSs based on multi-pair of patches, each of which consists of two branches of three MFE units and
three SCF modules, are constructed to learn local features that preserve both modality-sharable and modality-
specific representations along spatial and channel directions.

+ Weemploy the LRDC module to model the long-range dependencies among local representations, based on
which global representations are learned for MCl identification.

The rest of this paper is organized as follows. In section 2, we introduce the studied data and preprocessing
steps. The proposed method is described in section 3. Subsequently, we present the experimental setting and
results in section 4. Discussion and conclusion are provided in sections 5 and 6, respectively.

2. Materials

Two datasets from Alzheimer’s disease neuroimaging initiative (ADNT) database (Jack et al 2008), including
ADNI-1 and ADNI-2, were enrolled to evaluate the proposed method. According to standard clinical criteria,
such as mini-mental state assessment scores (MMSE) and clinical dementia rating, these subjects were divided
into two groups (NC and MCI). MCI subjects were further classified into stable MCI (sMCI) and progressive
MCI (pMCI) based on whether they would convert to AD within 36 months after the baseline evaluation. Note
that subjects who appeared in both datasets were retained in ADNI-1 but removed from ADNI-2. Totally, the
ADNI-1 dataset consists of 98 NC, 121 sMCI and 79 pMCI subjects, while the ADNI-2 dataset contains 78 NC,
138 sMClI and 65 pMCI subjects. More demographic information can be found in table 1.

All MRIimages were processed following a standard pipeline: (1) anterior commissure-posterior
commissure (AC-PC) correction, (2) intensity inhomogeneity correction using N3 algorithm (Sled et al 1998),
(3) skull stripping and cerebellum removal with aBBEAT", (4) image registration to the Colin27 template

4 https://www.nitrc.org/projects/abeat/
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Figure 2. The flowchart of the proposed MFN mainly consists of three parts: data pre-processing, local representation learning, and
dependency-aware global representation learning. We first feed the original MR image data into the aBEAT for AC-PC correction, N3
correction, skull stripping, and cerebellum removal. Meanwhile, the original PET image is registered to the corresponding MR image,
further performing skull stripping and cerebellum removal using the processed MRI as the mask. Then, the cerebellum-removed
multi-modal images are registered to the Colin27 template and also extracted patches to construct the paired multi-modal patches
dataset. In the local representation learning stage, the multi-modal patches are fed into the corresponding modality-specific feature
extraction units to extract multi-level and -modal features. Using the proposed sine-cosine fusion module, we can learn the local
representation based on the features learned from multi-modal patches extracted from the same position. Finally, in the dependency-
aware global representation learning stage, we fed the local representations into the long-range dependency capture module to learn
the dependencies among patches to construct the global representation, which is further fed into the dense layers to make disease
prediction.

(Holmes et al 1998) via SPM (Penny et al 2011). All PET images preprocessing contains following procedures: (1)
registering to the MRI image of the same subject, (2) using skull-stripped and cerebellum-removed MRI image
as mask to yield skull-stripped and cerebellum-removed PET image by multiplication, (3) registering the above
PET image to the Colin27 template by using the deformation field between the corresponding MRI image and
the template. Finally, all processed images were splitted into 36 non-overlapping patches with a size of

32 x 32 x 32.

3. Method

In this section, we introduce the proposed multi-level fusion network in detail. For ease of understanding, we
also drew a flowchart of MFN, as shown in figure 2. Specifically, we first pre-processed the multi-modal
neuroimages and extracted patches to build the multi-modal patch dataset. Subsequently, we utilized multiple
DCS and SCF modules to learn local representation from paired multi-modal patches. Furthermore, the local
representation of patches extracted from multiple locations will be input into the LRDC module to learn the
global representation to perform the final classification. The detailed architecture of our proposed networks is
illustrated in figure 1 and we further elobrate on each components in the following sections.

3.1. Local representation learning stage

Thelocal representation learning stage, which contains multiple DCSs, is constructed to learn local
representations. Each DCS consisting of two branches of MFE units and three SCF modules (denoted as {S;}_,)
is applied to extract local representation for the specific position. Specifically, the multi-modal patches sampled
from the same position of MRI and PET images are first fed into two branches to learn modality-specific
features. With multi-modal features of two branches, we devise a SCF module to integrate them into
comprehensive representations that preserve modality-sharable information and modality-specific
characteristic simultaneously.

3.1.1. Modality-specific feature extraction units
As shown in figure 1, both branches contain three MFE units, which are denoted as {M;};_, and {P.}}_;,
respectively, for extracting multi-level features from the input patches. Each MFE unit contains a convolutional

4
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Figure 3. Architecture of the sine-cosine fusion (SCF) module for merging multi-modal feature with the same level into a
comprehensive pattern. Specifically, the SCF module consists of channel-direction and spatial-direction phases, which learn
modality-sharable and modality-specific representations along channel and spatial directions, respectively.

layer and a dense block that are constructed to extract level-specific features. Specifically, the convolutional layer
of the first MFE unit of two branchesisal X 1 X 1convolutional layer with the stride of 1 to avoid the problem
of information dropout caused by early down-sampling, while the other two adopta 3 x 3 x 3 convolutional
layer with the stride of 2 to halve the size of spatial resolution and yield higher-level features. Meanwhile, each
dense block in MFE units contains three convolutional layers, which are connected densely to avoid gradient
vanishing and maximize information flow. Notably, each convolutional layer is followed by batch normalization
and ReLU activation operators to prevent gradient explosion and enhance network sparsity, respectively.
Moreover, all convolutional layers in the same unit share the same number of channel which is setto 16 x 2/ for
ith MFE unit. Finally, feature maps X}, € RP*HxWixCiand X, € RP*HxWxCiof M; and P, will be fed into ith
SCF module, S;, for exploring modality-sharable and modality-specific representations, where D;, H;, W; and C;
are the depth, height, width and channel of the feature maps, respectively.

3.1.2. Sine-cosine fusion module

Various strategies can be used to fuse features from different modalities (Liu et al 2018a, Fang et al 2020, Zhang
and Shi 2020). However, most of these strategies might not preserve both modality-sharable information and
modality-specific representations at the same time. Additionally, different channels and spatial positions in
features maps may contribute unequally to the modality-sharable and modality-specific representations.
Therefore, we propose a SCF module that consists of channel-direction fusion and spatial-direction fusion
phases to learn features that simultaneously preserve modality-sharable and modality-specific representations.
As shown in figure 3, each module contains two blocks to learn features in the channel and spatial directions,
respectively.

We first introduce the details of learning modality-sharable and modality-specific representations along
channel direction. Given the input features X‘M and Xi; for S;, weusetwo D; x H; x W, convolutional layers
with channel number of C; to generate two modality-specific representation vectors (i.e. vi;, v, € RI*1x1xC)
for cross-modality feature learning. Notably, each convolutional layer is followed by batch normalization and
sigmoid activation operators to map the feature into the range of [0, 1]. Then, we compute the difference vector
d=vi —vh=[d, -, d5 € R *1xC where {d/ }1_, reflects the heterogeneity of the jth channel of multi-
modal features. Subsequently, we apply the cosine function to the difference vector d to yield a modality-
sharable coefficient vector ¢¢, which is defined as follows

¢ = cos(d) = [cos(dY), ---, cos (d%)]. (1)

It’s worth noting that cos (d/) has a large value when multi-modal representations in the jth channel are close
to each other. Similarly, we also apply the sine function on the difference vector d to construct the modality-
specific coefficient vectors ¢}, and ¢}, which are computed by

¢y = sin(d) = [sin(d), -+, sin (d9)],
¢} = sin(—d) = [sin(—d"), -+, sin(—d)].

Intuitively, ¢}, is opposite to ¢}, for highlighting modality-specific characteristics. Subsequently, we yield
the weighted vectors that preserve the modality-sharable and modality-specific characteristics by

Wiy = Vi X (¢ + #5)»
Wh = vh X (¢ + ¢}). )

Finally, the channel weighted multi-modal features with modality-sharable and modality-specific
representations along channel direction can be computed as follows:
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i i i
XMC = XM X W

be = Xbh X Wh. 3)

In the spatial-direction phase, we first calculate the difference matrix D between the multi-modal features
X’ and Xk Then, we compute the modality-sharable coefficient matrix (i.e. &), modality-specific
coefficient matrices (i.e. &}, and ®3) and the spatial weighted multi-modal features X5 and X’ according to
equations (1)—(3), where X},g and X’ can be formulated as:

s = Xive X (@ + B},
Xps = Xpe X (B + Dp). 4)
We further integrate the multi-modal features X’s and X’ into X' € RP:*Hix WixCi by
X = Xiys + X 6)

Then, the feature map X'isfedintoa D; x H; x W, convolutional layer with channel number of 12 to
construct a ith level feature vector x' € R'*!*1*12 Finally, multi-level feature vectors from Sj, S, and S; are
connected as local representations (i.e. x = [x!, x?, x°] € R*1*1%36) for subsequent global representations
learning.

3.2. Dependency-aware global representation learning stage
Although modality-sharable and modality-specific representations can be learned by the dual-channel
backbones, they are local patterns and focus on region-specific information and ignore the dependencies among
brain regions (Lian et al 2018, Liu et al 2018b, Liu et al 2019). Inspired by (Wang et al 2018), we employ the LRDC
module to construct the global representations that model long-range dependencies among local regions.

Given local representations of N regions, we first reshape and concatenate them as a feature matrix
X =[x}, - Xn] € RUNX36 where {x; )0, is the local representations of kth pair of multi-modal patches.
Subsequently, we apply three 1 X 1 convolutional layers 6, 1, and ¢ to map the feature matrix X into weight
matrices Q, K, and V that are denoted as

Q=f(X; Wp),
K = (X5 W),
V=71 W,). (6)

in which Wj, W,,, and W, are learnable weight of convolutional layers 8, 1), and ¢, respectively. After that, these
three weight matrixes will explore the dependencies among local positions in the self-attention manner
(Vaswani et al 2017). Specifically, we first give Q, K, and V anew shape R36Nx1 through aresize operation,
which contains 36N local features. Furthermore, we compute the correlation coefficient matrix M € R36N>36N

by
M = softmax(Q ® KI), ™)

where ® denotes matrix multiplication. Hence, the correlation coefficient 7;; in M reflects the dependency
between local features in ith and jth positions. Following that, we multiply the correlation coefficient matrix M
times V to get the correlation matrix Y, which can be denoted as

Y=M®V. ®)
Furthermore, we yield the global representation F by

F=f(Y; Wz) + X, 9

where Wy is the learnable weight of 1 X 1 convolutional layer Z. Finally, the global representation F is fed into
two dense layers with 36 and 1 neurons which are followed by a sigmoid function to produce a subject-level
diagnosis.

3.3. Loss function

We apply the binary cross-entropy as the loss function of our proposed method. Specifically, let I, y be the input
neuroimages and corresponding class label. The learnable parameters for the local representation learning and
dependency-aware global representation learning stages are denoted as W; and W, respectively. After getting the
prediction output ¥, the binary cross-entropy loss can be defined as

Loss(I; Wi, W) =y - log(¥) + (1 — y) - log(1 — ¥). (10)

The Loss will be propagated backwards to optimize the network parameters Wy and W,

6
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3.4. Implementation details

Similar to (Lian et al 2020), to evaluate the generalization capability of different methods, all models were trained
on ADNI-1 and evaluated on ADNI-2. Additionally, we randomly selected 30% samples in ADNI-1 as the
validation dataset. The diagnostic performance was quantitatively evaluated in terms of four criteria, that is,
accuracy (ACC), sensitivity (SEN), specificity (SPE), and area under the receiver operating characteristic curve
(AUC). We trained the proposed MEN by setting the mini-batch size and learning rate as 36 and 0.001,
respectively, and applying dropout with the rate of 0.5 to multiple convolutional layers. We also applied the early
stopping strategy to select the best model for test, i.e. when the loss reduction on validation dataset is less than
0.001 for 10 consecutive epochs, the training stopped and the model was selected. All parameters were initialized
with ‘kaiming_normal’ (He et al 2015) and the model was trained with the SGD optimizer. In addition, all DCSs
share the same weights to limit the number of learnable parameters. For competing methods, we followed the
parameter settings in the literatures. We also performed delong-test for comparison between the proposed
method and other competing methods. We used Pytorch package” based on Python3.7 to implement all
comparison methods. All computationally intensive calculations were offloaded toa 12 GB NVIDIA RTX
2080Ti.

4. Experiments and results

In this section, we first introduce the experimental settings, including comparison methods, parameter settings,
and evaluation strategy. Subsequently, we compare our proposed method with state-of-the-art methods and
validate the effectiveness of the proposed method by ablation experiments. Finally, we also conduct
discriminative localization analysis for the proposed method.

4.1. Experimental settings

We compare our proposed method with two conventional machine learning methods, including landmark-
based morphological method (Zhang et al 2016) and voxel-based morphological method (Ashburner and
Friston 2000). Besides, we further compare the proposed method with four recent deep learning methods,
including two mono-modal approaches (i.e. 2.5D network (Kim et al 2021), multi-view separable pyramid
network (Pan ef al 2020a)) and two multi-modal methods (i.e. deep multi-modal fusion network (Zhang and
Shi 2020), path-wise transfer dense convolution network (Gao et al 2021)). The details of these six competing
methods are introduced as follows.

(1) Landmark-based morphological method (LBM): in the LBM method, K = 50 anatomical landmarks were
used to locate 2K 3D patches from the PET and MR images. From each patch, 100D local energy patterns as
features were extracted, and the features for different patches were concatenated as a 200K-D vector. Finally,
using these patch-level features, support vector regression (SVR) classifiers were trained to predict disease
progress.

(2) 2.5D network (2.5D-Net): the 2.5D-Net method used slices of three views of PET data to construct 2D CNN
classifiers. Following (Kim et al 2021), we separated 3D PET data into 2D slices from three views as the input
of 2D sub-networks to yield slice-wise predictions. Notably, 2D sub-networks shared the same architecture
but different parameters. Finally, we concatenated all slice-wise prediction values and then fed them into the
fully connected layer for the final prediction.

(3) Multi-view separable pyramid network (MiSePyNet): the MiSePyNet method constructed a 3D CNN-based
multi-scale model on the whole-brain MR images. In line with (Pan et al 2020a), we first constructed a slice-
wise CNN for each view at the starting layer in a multi-scale manner to learn representations among slices.
After that, we fed the intermediate feature into spatial-wise CNN which is also with different scales of
convolutional kernels, to yield distinguishing spatial patterns for prediction tasks. Finally, we combined
feature maps of different views and then fed them into fully-connected layers followed by a softmax function
for classification.

(4) Deep multi-modal fusion network (DMF-Net): the DMF-Net method used slices filtered by AlexNet to
construct a three-branch 2D network for diagnosis. Specifically, in line with (Zhang and Shi 2020), we first
applied AlexNet to select slices of three views (i.e. Axial, Coronal and Sagittal) according to the classification
accuracy corresponding to each slice-dataset, where the slice-dataset means the slices located in the same
position of multi-modal neuroimages of all samples. Finally, we constructed a three-branch network, in
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Figure 4. The confusion matrices achieved by seven different methods in the MCI diagnosis task (MCI versus NC) and MCI
conversion task (pMCI versus sMCI). The corresponding models are trained on ADNI-1 and tested on ADNI-2.

Table 2. Results of MCI diagnosis and MCI conversion prediction tasks, which are obtained by different
methods trained on ADNI-1 and tested on ADNI-2, respectively. The best results are marked in boldface. The
term denoted by * represents that the results of MFN are statistically significantly better than other comparison
methods (p < 0.05) using delong-test.

MCIversus NC sMClI versus pMCI

Method

ACC SEN SPE AUC ACC SEN SPE AUC
LBM 0.646 0.740 0.467 0.583" 0.671 0.565 0.740 0.697*
VBM 0.681 0.746 0.556 0.542" 0.728 0.551 0.846 0.553"
2.5D-Net 0.730 0.762 0.670 0.791" 0.732 0.615 0.806 0.784"
MiSePyNet 0.738 0.803 0.609 0.739" 0.797 0.765 0.817 0.832"
DMF-Net 0.731 0.728 0.736 0.786" 0.792 0.714 0.846 0.761"
PT-DCN 0.754 0.838 0.586 0.776" 0.803 0.739 0.846 0.818"
MEN 0.802 0.821 0.767 0.842 0.849 0.841 0.856 0.887

which two branches are utilized to extract modality-specific features and the other is used to fuse multi-
modal features for diagnosis.

(5) Pathwise transfer dense convolution network (PTDCN): the PT-DCN (Gao et al 2021) method gradually
learned and combined the multi-level and multi-modal features of 3D MRI and PET data through a path-
wise transfer deep convolution network for brain disease diagnosis. Specifically, the network contained two
paths of dense convolutional networks and three transfer blocks. Each path learned features from specific
single-modality data. Three transfer blocks fused multi-level intermediate features of two paths and then
fed them back into two paths for further analysis. Finally, last outputs of two paths were concatenated and
then fed into two convolution layers and a fully connected layer for diagnosis.

4.2. Results of MCI Diagnosis and conversion prediction task

Table 2 and figure 4 report the experimental results and confusion matrices of all comparison methods on MCI
diagnosis and MCI conversion prediction tasks (i.e. MCI versus NC and sMCI versus pMCI), respectively. From
the figure and table, we can observe four key points. First of all, compared with the conventional machine learning
approaches (i.e. LBM and VBM), the deep-learning approaches (i.e. 2.5D-Net, MiSePyNet, DMF-Net, PT-DCN,
and our MEN) largely improve the diagnostic performance, which demonstrates the significance of learning task-
oriented features for brain disease diagnosis. Second, generally speaking, 3D-based methods (i.e. MiSePyNet, PT-
DCN, and MEN) obtain better performance than 2D-based approaches (i.e. 2.5D-Net and DMF-Net) on two tasks.
Actually, ADNI images contain highly complex patterns and individual-specific information. In 3D-based
methods, the 3D convolutional kernel can learn representations across slices simultaneously, which can aid in the
construction of spatial structural information to improve classification performance while the 2D convolutional
kernel is insufficient to capture it, thereby limiting the performance. Moreover, the complexity (i.e. the sub-
network number) of 2.5D-Net is higher than DMF-Net, which may fall into over-fitting when dealing with small-
size datasets, whereas DMF-Net pre-selects informative slices to improve diagnosis performance. Third, multi-
modal representations learning and fusion are crucial for improving diagnostic accuracy. For example, PT-DCN
and MEN, both of which have the built-in multi-modal fusion mechanisms, consistently outperform mono-
modal methods on two diagnostic tasks. As a 2D-based multi-modal method, DMF-Net yields better performance
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Figure 5. Brier score scatter charts (along with the mean value and intra-group standard deviations) of the deep learning methods on
two tasks: (a) NC versus MCI; and (b) sMCI versus pMCI. The mean value, positive-group, and negative-group standard deviations
are shown in black, red, and brown, respectively. And the positive and negative groups in (a) and (b) refer to the MCI and NC groups
and the pMCI and sMCI groups, respectively.

than 2.5D-Net but is just comparable with MiSePyNet, which demonstrates the effectiveness of multi-modal
fusion and also the significance of 3D structural information in the classification tasks. Last but not least, regardless
ofthe MClI versus NC task or the sMCI versus pMCI task, our proposed method obtains the best performance with
the highest metric values in most cases. Compared with other methods, several potential advantages exist in the
proposed method: (1) The input 3D patches enable the network to learn spatial structural information and to make
more robust decisions. (2) The SCF modules learn modality-sharable and modality-specific representations from
multi-modal features of two branches along spatial and channel directions. (3) The LRDC module captures the
dependencies among position-specific patterns to construct global features for final prediction. We also computed
the Brier score (Brier et al 1950) and intra-group standard deviation (STD) to evaluate the performance of four
deep learning methods on two tasks by providing the gap between the prediction value and the realistic target as
well as the predictive variance of the same group. The Brier score scatter charts and intra-group STDs are provided
in figure 5, in which the smaller mean value and STD value indicate better performance and robustness,
respectively. From the figure, we can observe that MEN can achieve the best performance in terms of STD and Brier
score metrics on the NC versus MCI task. Moreover, although the 2.5D-Net can yield the smallest STD value on the
sMCI versus pMCI task, the mean Brier score is the higher than others, indicating the enormous gap between the
prediction value and the realistic target. Meanwhile, the proposed MEN yields reasonable intra-group STD values
and a mean Brier score on the sMCI versus pMCI task, which verifies its robustness and superiority again.

4.3. Ablation study

The ablation experiments are designed to validate the effectiveness of each component in the proposed method. All
MFN-related variants can be divided into three categories as follows. (I) Multi-level learning related: Let MFN-M1
and MFN-M2 denote MFN with the DCS that only outputs the lowest-level features (i.e. x*) and highest-level
features (i.e. x°) rather than comprehensive multi-level features, respectively. (II) Sine-Cosine fusion module
related: let MFN-S1, MFN-S2, MFN-S3, MFN-S4, and MEN-S5 denote the MEN without modality-sharable
exploration, modality-specificity exploration, spatial-direction fusion, channel- direction fusion, and the SCF
module, respectively. (III) Dependency-aware global representation learning related: let MFN-L denotes the MFN
without the LRDC module. The experimental results are shown in table 3, from which several points can be found.
(I) The efficacy of multi-level learning mechanism. We can observe that MEN outperforms MEN-M1 and MFN-
M2, which demonstrates that the multi-level features can help learn a comprehensive pattern including both
containing more discriminative information than shallow features (i.e. x). (I) The efficacy of the sine-cosine
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Figure 6. [llustration of the DAMs for four subjects in ADNI-2, including 2 NC subjects (top) and 2 MCI subjects (bottom), which are
generated by the S; of the model trained on ADNI-1 in the task of MCI diagnosis.
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Figure 7. [llustration of the DAMs for four subjects in ADNI-2, including 2 sMCI subjects (top) and 2 pMCI subjects (bottom), which
are generated by the S; of the model trained on ADNI-1 in the task of MCI conversion prediction.

Table 3. Results of MCI diagnosis and MCI conversion prediction tasks, which are obtained by different
MEFN-related variants trained on ADNI-1 and tested on ADNI-2, respectively. The best results are marked
in boldface.

MCIversus NC sMCI versus pMCI
Method

ACC SEN SPE AUC ACC SEN SPE AUC

MEN-M1 0.688 0.786 0.500 0.676 0.659 0.493 0.769 0.648
MFN-M2 0.726 0.798 0.589 0.755 0.763 0.696 0.808 0.822

MEN-S1 0.722 0.879 0.422 0.758 0.763 0.594 0.879 0.800
MEN-S2 0.745 0.740 0.756 0.808 0.815 0.725 0.875 0.868
MFN-S3 0.722 0.798 0.578 0.749 0.815 0.696 0.894 0.849
MEFN-54 0.749 0.809 0.633 0.803 0.821 0.826 0.817 0.866
MEN-S5 0.711 0.740 0.656 0.769 0.809 0.739 0.856 0.865
MEFN-L 0.730 0.746 0.700 0.761 0.763 0.739 0.779 0.839
MEN 0.802 0.821 0.767 0.842 0.849 0.841 0.856 0.887

fusion module. It is not surprising that MFN-S3, MFN-S4, and MFN work better than MEN-S5 since they execute
feature enhancement operations in the channel, spatial, and both directions, respectively, to keep low redundancy.
Also, the performance achieved by MFN-S1 and MEN-S2 (i.e. with the SCF module merely exploring modality-
specific and modality-sharable representations) is superior to that of MFN-S5 (i.e. without the SCF module),
which demonstrates the effectiveness of the SCF module in commonality and specificity exploration directions.
Furthermore, the performance yielded by MEN-S1 is inferior to that of MFN-S2. A possible reason is that
modality-sharable representation may be more significant to identify dementia-induced abnormalities than
modality-specific information. (III) The efficacy of dependency-aware global representation learning. As expected,
when the local dependency correlations among brain regions are not fully utilized, the diagnostic performance of
MEN-L decreases significantly. This might be attributed to the fact that dementia-induced anatomical
abnormalities are distributed across many brain regions, so considering multiple local information collaboratively
will boost the diagnostic performance.

4.4. Discriminative localization analysis

It’s of great significance to identify potential biomarkers associated with the prognosis of dementia. We
randomly selected two subjects from two comparison groups in ADNI-2 as the input to a model trained on two
tasks to generate the corresponding cross-channel averaged intermediate feature to produce a disease attention
map (DAM). The DAMs obtained in the MCI versus NC and sMCI versus pMCI tasks have shown in figures 6
and 7. We depicted each DAM in 2D form from three perspectives (i.e. axial, coronal, and sagittal views). From
these figures, we can observe three key points. First of all, the proposed MFN consistently highlights multiple
parts at the locations of the hippocampus, frontal lobe, fusiform gyrus, amygdala, and thalamus for different
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Table 4. Results of MCI diagnosis and MCI conversion prediction tasks, which are obtained by the MFN model
with different patch sizes trained on ADNI-1 and tested on ADNI-2, respectively. The best results are marked in

boldface.
) MCl versus NC sMCI versus pMCI

size amount

ACC SEN SPE AUC ACC SEN SPE AUC
16 316 0.684 0.659 0.733 0.737 0.694 0.826 0.606 0.742
24 97 0.681 0.699 0.644 0.735 0.723 0.812 0.663 0.771
28 58 0.715 0.763 0.622 0.746 0.809 0.725 0.845 0.849
32 36 0.802 0.821 0.767 0.842 0.849 0.841 0.856 0.887
36 29 0.703 0.746 0.622 0.757 0.809 0.783 0.827 0.855
48 12 0.719 0.757 0.644 0.790 0.798 0.826 0.779 0.869

subjects with MCI or NC. It implies that the model can automatically focus on disease-related biomarkers to
improve diagnostic performance, given that the discriminative power of these brain regions for dementia
diagnosis has already been validated in previous studies (Wang et al 2007, Frisoni et al 2010, Zhang et al 2011,
Coupé etal 2012, Aggleton etal 2016, Liu et al 2017b). Second, the most discriminative brain regions are
consistent but have variant influences on different subjects. For example, most DAMs highlight the thalamus,
while to varying degrees. It implies that the proposed MFN method is feasible for individualized diagnosis of
brain atrophies associated with MCI, which should be a valuable property in practice. Third, by comparing
figure 6 with figure 7, we can see that the concerning regions for the two tasks are partially different, although
they are largely consistent. For example, the lingual gyrus regions are highlighted for most subjects in the sagittal
view of figure 7, while not for figure 6. It is worth noting that previous studies (Liu et al 2017b) have shown that
the lingual gyrus is an important biomarker for analyzing the progression of AD, which in some sense implies
that our proposed method is effective in task-oriented discriminative localization to predict disease progression.

5. Discussion

In this section, we discuss the influence of the patch size, the comparison results with some previous studies, and
limitations and future work in sequence.

5.1. The influence of patch size

The proposed network consists of local representation learning and dependency-aware global representation
learning stages, in which the former stage aims to explore multi-level features of patches and the latter one aims
to exploit the correlations among patches. Therefore, it is worth investigating that the influence of the input
patch size. In this section, we conducted experiments on multiple networks with different input patch sizes,
including 16, 24, 28, 32, 36, and 48. We trained these models on ADNI-1 and evaluated them on the ADNI-2
dataset as before. The quantified classification results in terms of four different metrics (i.e. ACC, SEN, SPE, and
AUC) and the amount of patch corresponding to each size are listed table 4. From table 4, we can find that the
proposed framework yields the best performance when the input size is equal to 32, while smaller or bigger
inputs lead to worse results. It can be attributed to two reasons: (1) the patches with a small size contain less
structural information that is necessary for the diagnosis. (2) A large patch size will reduce the quantity of
extracted patches, which in unbeneficial to constructing location dependency among patches for the LRDC
module. Fortunately, the patch size of 32 is a trade-off between enough structural information and a sufficient
number of patches.

5.2. Comparison with previous studies

In table 5, we roughly summarize and compare our results with those of several state-of-the-art methods (Suk
etal 2014, Liuetal 2017a, Cuiand Liu 2018, Lian et al 2018, Pan et al 2018, Li et al 2019, Spasov et al 2019, Zhou
etal2019, Aderghal et al 2020, Hao et al 2020, Pan et al 2020b, Gao et al 2021) reported in the literature for AD
diagnosis using baseline MRI or multi-modal data. The results presented in table 5 demonstrate that our
proposed method achieves comparable performance to state-of-the-art methods in most cases. Despite making
adirect comparison may not be entirely fair due to the varying number of subjects and inconsistent dataset
partitions, we can still draw some conjectures from the results. First, the multi-modal fusion methods can learn
more discriminative information by exploring the comprehensive characteristics inherent in multi-modal data
for MCI diagnosis. As shown in table 5, the multi-modal data-based models (Suk et al 2014, Liu et al 2017a, Pan
etal2018, Spasovetal 2019, Aderghal et al 2020, Hao et al 2020, Pan et al 2020b, Gao et al 2021) achieved

better performances on two tasks than single-modality data-based methods (Cui and Liu 2018, Lian et al 2018,
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Table 5. A brief summary of the state-of-the-art studies based on ADNI dataset for MCI diagnosis. The best results are marked in boldface.

MCIversus NC sMClI versus pMCI

Method Modality Subjects

ACC SEN SPE AUC ACC SEN SPE AUC
(Lian et al 2018) MRI 429 NC + 465 sMCI +- 205 pMCI —_ —_ —_ —_ 0.809 0.526 0.854 0.781
(Cuiand Liu2018) MRI 223 NC+231 sMCI + 165 pMCI 0.746 0.773 0.700 0.777 0.750 0.733 0.762 0.797
(Lietal2019) MRI 216 NC + 233 sMCI + 164 pMCI 0.750 0.819 0.622 0.758 0.725 0.610 0.825 0.746
(Gaoetal 2021) MRI+PET 427 NC + 332 sMCI + 234 pMCI — — — — 0.753 0.708 0.784 0.778
(Panetal2018) MRI+PET 429 NC + 465 sMCI + 205 pMCI — — — — 0.791 0.553 0.829 0.758
(Pan et al 2020b) MRI+PET 420 NC + 562 sMCI +- 146 pMCI — — — — 0.774 0.791 0.772 0.825
(Hao et al 2020) MRI+PET 52 NC + 56 sMCI + 43 pMCI 0.845 0.940 0.662 0.810 0.778 0.674 0.855 0.760
(Suketal2014) MRI+PET 101 NC + 128 sMCI 4 76 pMCI 0.857 0.954 0.659 0.881 0.759 0.480 0.952 0.747
(Aderghal eral 2020) MRI+DTI 399 NC+ 273 MCI 0.785 0.777 0.814 0.796 — — — —
(Zhou etal 2019) MRI+PET+Genetic 211 NC + 205 sMCI + 157 pMCI — — — — 0.743 — — 0.755
(Liuetal 2017a) MRI+PET+CSF 226 NC+ 395 MCI 0.800 0.862 0.688 0.805 0.790 0.608 0.925 0.797
(Spasovetal 2019) MRI+DTI+clinical 184 NC + 228 sMCI + 181 pMCI — — — — 0.830 0.875 0.810 0.917
Proposed MRI+PET 188 NC + 225 sMCI + 148 pMCI 0.802 0.821 0.767 0.842 0.849 0.841 0.856 0.887
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Lietal 2019) in most situations, which demonstrates the significance of multi-modality neuroimages in MCI
diagnosis. Second, the increases of data modalities might boost classification performance by providing
informative specific views for MCI. For instance, compared with two-modality data-based models (Pan et al
2018,2020b, Gao et al 2021), three-modality data-based methods (Liu et al 2017a, Spasov et al 2019) further
improved the diagnosis performance in the MCI conversion task. Notably, the significant improvement of Hao
etal (2020) and Suk et al (2014) on the MCI diagnosis task might benefit from the different data partitioning
strategies, i.e. they are evaluated by cross-validation on a relatively small dataset. Third, comparing three-
modality data-based models (Liu et al 2017a, Spasov et al 2019, Zhou et al 2019), the deep-learning method
(Spasov et al 2019) can achieve better performance than the conventional machine-learning methods (Liu et al
2017a, Zhou etal 2019). A possible reason might be that the deep learning methods integrate feature extraction
and model construction into a unified framework, while the machine learning methods are based on hand-
crafted features that may mismatch with models and lead to suboptimal performance. Though only using two
modalities of data, our MFN still performs better than most methods, which can be attributed to: (1) extracting
multi-level feature representations for multi-modal neuroimages to enhance the feature robustness; (2) learning
the underlying correlation between multi-modal neuroimages for feature fusion; (3) exploring the dependency
correlation among local patches to construct robust global features to boost the diagnostic performance.

5.3. Limitations and future work

Although our proposed method achieves superior results in automatic MCI diagnostic tasks, its performance
and generalization capacity could be further improved in the future by carefully dealing with the following
limitations or challenges. First, in our current implementation, the input patches are sampled across the entire
brain in a non-overlapping manner. Considering the abnormities caused by dementia are subtle and
concentrated in pathological positions, it might be reasonable to extend our proposed method by using clinical
prior knowledge to extract discriminative patches centered on disease-related landmarks. Second, the network
pruning strategy can be used into our method to purify informative patches after pre-training the network.
Third, itis worth noting that the datasets studied in this paper have different imaging data distributions due to
different scanners (i.e. 1.5 T'and 3 T scanners for ADNI-1 and ADNI-2, respectively). Hence, incorporating the
domain adaptation strategy into our current framework might enhance its generalization capability. Finally, due
to the expensive cost and radiation injury of multi-modality neuroimages, not all subjects have complete data,
which has remained a common challenge in AD diagnosis based on multi-modality neuroimages. In this paper,
we discard the modality-incomplete subjects, which could decrease the dataset’s size and degrade the generality
and accuracy of the classification model. Inspired by Liu et al (2022), a promising direction is to evaluate a virtual
PET image based on its relevance with the corresponding MR image and extract multi-modal features in the
generation process to ensure the feature’s reliability.

6. Conclusion

In this paper, we propose a multi-level fusion network for mild cognitive impairment identification using multi-
modal neuroimages that consists of local representation learning and dependency-aware global representation
learning stages. Specifically, in the local representation learning stage, we construct multiple DCSs, each of
which consists of two branches of MFE units and three SCF modules, to learn local representations which
preserve both modality-sharable and modality-specific representations. Three MFE units in each branch are
designed to extract multi-level modality-specific features while the SCF modules are devised to learn modality-
sharable and modality-specific representations from multi-modal features of two branches. In the dependency-
aware global representation learning stage, we employ the LRDC module to model the correlations among local
representations and integrate them into global ones for MCl identification. On the ADNI public dataset with 561
subjects, the effectiveness of our proposed method on MCI versus NC and sMCI versus pMCI tasks has been
extensively evaluated. Compared with several state-of-the-art CAD methods, our proposed method achieves
better or at least comparable classification performance, especially in the relatively challenging task of MCI
conversion prediction.
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